暑期学习视频 作文 高一学习方法 高二学习方法 高三学习方法 高一学习计划 高二学习计划 高三学习计划 初中视频 高中视频

数形结合思想的思想方法

  来源:网络  作者:未知 今日点击:
站长推荐:名师直播答疑(免费观看)!
数形结合思想的思想方法
     数形结合是中学数学中四种重要思想方法之一,对于所研究的代数问题,有时可研究其对应几何的性质使问题得以解决(以形助数);或者对于所研究的几何问题,可借助于对应图形的数量关系使问题得以解决(以数助形),这种解决问题的方法称之为数形结合。

1.数形结合与数形转化的目的是为了发挥形的生动性和直观性,发挥数的思路的规范性与严密性,两者相辅相成,扬长避短。

2.恩格斯是这样来定义数学的:“数学是研究现实世界的量的关系与空间形式的科学”。这就是说:数形结合是数学的本质特征,宇宙间万事万物无不是数和形的和谐的统一。因此,数学学习中突出数形结合思想正是充分把握住了数学的精髓和灵魂。

3.数形结合的本质是:几何图形的性质反映了数量关系,数量关系决定了几何图形的性质。

4.华罗庚先生曾指出:“数缺性时少直观,形少数时难入微;数形结合百般好,隔裂分家万事非。”数形结合作为一种数学思想方法的应用大致分为两种情形:或借助于数的精确性来阐明形的某些属性,或者借助于形的几何直观性来阐明数之间的某种关系.

5.把数作为手段的数形结合主要体现在解析几何中,历年高考的解答题都有关于这个方面的考查(即用代数方法研究几何问题)。而以形为手段的数形结合在高考客观题中体现。

6.我们要抓住以下几点数形结合的解题要领:

(1) 对于研究距离、角或面积的问题,可直接从几何图形入手进行求解即可;

(2) 对于研究函数、方程或不等式(最值)的问题,可通过函数的图象求解(函数的零点,顶点是关键点),作好知识的迁移与综合运用;

(3) 对于以下类型的问题需要注意:可分别通过构造距离函数、斜率函数、截距函数、单位圆x2+y2=1上的点及余弦定理进行转化达到解题目的。

数形结合思想的可以干什么?
  一、解决集合问题:在集合运算中常常借助于数轴、Venn图来处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了。
  二、解决解析几何问题:解析几何的基本思想就是数形结合,在解题中善于将数形结合的数学思想运用于对点、线、曲线的性质及其相互关系的研究中。
  三、解决方程与不等式的问题:处理方程问题时,把方程的根的问题看作两个函数图象的交点问题;处理不等式时,从题目的条件与结论出发,联系相关函数,着重分析其几何意义,从图形上找出解题的思路。
  四、解决立体几何问题:立体几何中用坐标的方法将几何中的点、线、面的性质及其相互关系进行研究,可将抽象的几何问题转化纯粹的代数运算。 
  五、解决数列问题:数列是种特殊的函数,数列的通项公式以及前n项和公式可看作关于正整数n的函数。用数形结合的思想研究数列问题是借助函数的图象进行直观分析,从而把数列的有关问题转化为函数的有关问题来解决。解决线性规划问题:线性规划问题是在约束条件下求目标函数的最值的问题。从图形上找思路恰好就体现了数形结合思想的应用。
  六、解决函数问题:借助于图象研究函数的性质是种常用的方法。函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。
  七、解决线性规划问题:线性规划问题是在约束条件下求目标函数的最值的问题。从图形上找思路恰好就体现了数形结合思想的应用

责任编辑:狂人阿昌

有什么错误或者意见欢迎您给我们留言数形结合思想的思想方法:的相关文章
英语倒装句型 :完全倒装使用方法

完全倒装句型 英语中的倒装句型是一种语法手段,用于表示一定的句子结构或强调某一句子成分。倒装句有两种:完全倒装和部分倒装。所谓完全倒装:就是将谓语动词置于主语前。完全倒装一般具有以下两个条件:①谓语动词是单个(即不带情态动词、助动词或be)的不

《带着小镇上路》现代文阅读方法指导

《带着小镇上路》现代文阅读方法指导 我那时认为这一生大概只会做一件事:离开小镇。 我不是在小镇里过得不愉快,那里的水土很适合我,只不过村里人都说外面的世界很精彩,把离开小镇当作出息。我选择一个夏天离开,人们都在打瞌睡,我神不知鬼不觉地走了,不

直线和圆的方程解题方法及技巧

题型一:直线和圆的方程解题过程中对“设而不求”解法技巧应用 分析: 利用“ OP ⊥OQ”求出m,问题可解 600)makesmallpic(this,600,1800);"> 名师点评: 在直线和圆的方程解题中,我们采用了对直线与圆的交点设“设而不求”的解法技巧,由于“ OP⊥OQ,”所

数形结合思想的思想方法

数形结合思想的思想方法 数形结合是中学数学中四种重要思想方法之一,对于所研究的代数问题,有时可研究其对应几何的性质使问题得以解决(以形助数);或者对于所研究的几何问题,可借助于对应图形的数量关系使问题得以解决(以数助形),这种解决问题的方法

什么是函数方程思想

什么是函数方程思想 函数方程思想就是用函数、方程的观点和方法处理变量或未知数之间的关系,从而解决问题的一种思维方式,是很重要的数学思想。 1.函数思想:把某变化过程中的一些相互制约的变量用函数关系表达出来,并研究这些量间的相互制约关系,最后解决

函数方程思想-重要数学思想

函数方程思想 函数方程思想就是用函数、方程的观点和方法处理变量或未知数之间的关系,从而解决问题的一种思维方式,是很重要的数学思想。 1.函数思想:把某变化过程中的一些相互制约的变量用函数关系表达出来,并研究这些量间的相互制约关系,最后解决问题,

推荐学习视频:高一、高二、高三视频(注册后免费学习20小时) (本文字数:1383.5)

关键词: 思想方法,思想,结合,数形
编辑:特约讲师